We propose an approach to learning, teaching, and performing statistical inference using tidyverse data science tools. We argue that this tidyverse-centric approach is both 1) feasible since the tidyverse is more intuitive for new R coders to learn than base R and 2) valuable since on our proposed path to statistical inference students will also learn to use data science tools applicable beyond the classroom. We'll start with 'just enough' data visualization & wrangling with the ggplot2 & dplyr packages to equip students with the necessary computational tools for the journey. Using these tools, we’ll cover both explanatory & predictive regression modeling and the infer package: a new package that makes statistical inference 'tidy' and transparent. Our approach also involves a combination of pen/paper exercises and 'tactile' sampling/resampling simulations to keep students engaged.

Date

Thu, May 23, 2019

Event

Department of Statistics Colloquium

Location

San Luis Obispo, CA

Links