moderndive: statistical inference via the tidyverse

Albert Y. Kim @rudeboybert

Cal Poly Statistics Department San Luis Obispo May 23

My Co-Authors

Chester Ismay: Textbook co-author

Jenny Smetzer: Labs author

Background

My Context for moderndive

My students:

- Undergraduate-only liberal arts college
- Service intro stats course for all majors, all years
- Calculus is a pre-req only in name
- 13 weeks x (3 x 70min lectures + 75min lab)
- 29/40 had never coded in R prior

My goals:

- Goal 1: Modeling with regression
- Goal 2: Sampling for inference

via the Point A: tidyverse Point B: Modal 1st time Two goals stats student 1. Modeling with regression 2. Sampling for inference Calculus? Coding? & 🤤 thru

Getting from Point A to Point B

What is the tidyverse?

- **ggplot2** for data visualization
- **dplyr** for data wrangling
- **readr** for data importing

Why tidyverse in general?

From tidy tools manifesto: Say what?

- Reuse existing data structures
- 2. Compose simple functions with the pipe
- 3. Embrace functional programming
- 4. Design for humans

- 1. Don't reinvent the wheel!
- Breakdown large tasks into steps using %>% "then"
- 3. What is the <u>goal</u> of your code?
- 4. Make code understandable to humans

Why tidyverse for stats newbies?

- IMO it's easier to learn than base R. <u>Others</u>
 too.
- It scales. You leverage an entire ecosystem of online developers and support: Google & StackOverflow
- Satisfy learning goals <u>while learning tools</u> <u>they can use beyond the classroom.</u>

End Deliverable of Course

- Think of how youths learn to play sports ...
- IMO stats newbies should learn to "play the whole game" in simplified form first
 - %>% add layers of complexity...
 - %>% add more layers of complexity...
 - %>% add more layers of complexity...
- Do this instead of learning individual components in isolation

End Deliverable of Course

Final project that <u>"plays the whole game"</u> of *all components* of data/science pipeline:

Example template given to students this semester, based on work by students Alexis C., Andrianne D., & Isabel G.

The R Series

Statistical Inference via Data Science

A moderndive into R & the tidyverse

Development version at moderndive.netlify.com

Part I: Data Science via the tidyverse

Chapters 2 - 5

Chapter 2: Getting Started

R: Engine

RStudio: Dashboard

- R: A new phone R Packages: Apps you can download
- IMO RStudio's best function: View()
- Getting students over initial \$\$\$ of coding
- Think piece: <u>"Why women in psychology can't program"</u>

Chapter 3: Data Viz via ggpLot2

Often said "Intro students can't learn ggplot"

Albert Y. Kim @rudeboybert

Intro stats & data science #chalktalk of grammar of graphics + homage to @katyperry today, #ggplot2 tomorrow #rstats

11:58 AM - 11 Sep 2017 from Amherst College

5 Retweets	29 Likes	Radies		Consulting Studio				•	
♀ 3	1,5	\bigcirc	29		ll				

Albert Y. Kim @rudeboybert

#chalktalk of #GrammarOfGraphics definition of "statistical graphic" + @ModernDive's "Five Named Graphs" #5NG #ggplot2

Recall

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects. 5NG Five Named Graphs (D) Scatterpolot geom-point() (B) Linegraphs geom-line() (B) Histograms geom-histogram (B) Boxplots geom-boxplot(

12:50 PM - 12 Sep 2017 from Amherst College

(5) Barplots

Chapter 4: Data Wrangling via dplyr Chapter 5: "Tidy" Data via tidyr

- Essential: %>% operator as it's needed later.
- Balance of how much students wrangling do vs how much you do for them?
- To completely shield students from any data wrangling is to betray true nature of work in our fields
- One proposed balance is in <u>"tame" data &</u> <u>fivethirtyeight package</u> paper (Kim, Ismay, Chunn)

Part II: Data Modeling via moderndive

Chapters 6, 7, & 11

Goal 1: Modeling with Regression 1. Data: evals 2. Exploratory Data Analysis

evals	×			
		Filter		
^	ID [‡]	score 🗘	age 🍦	gender 🗦
1	1	4.7	36	female
2	2	4.1	36	female
3	3	3.9	36	female
4	4	4.8	36	female
5	5	4.6	59	male
6	6	4.3	59	male
7	7	2.8	59	male
8	8	4.1	51	male
9	9	3.4	51	male
10	10	4.5	40	female
11	11	3.8	40	female
12	12	4.5	40	female

3. Regression Coeff

More later!

Also model selection!

Is there a way to teach model selection model complexity vs parsimony coccam's razor To intro stats students?

YES! Via data viz 📊 📈 📉 & EDA 🔍!

First show a case study where "interaction model" >>> "parallel slopes model"! 1/4

More model selection

ModernDive @ModernDive · Apr 19

 \sim

Next show a case study where "interaction model" vs "parallel slopes model" is "I dunno?!? They look kinda the same to me?!?

Part III: Statistical Inference via infer

Chapters 8 - 11

Goal 2: Sampling for Inference

1. Tactile Sampling \longrightarrow 2. Virtual Sampling \longrightarrow 3. Theoretical Console ~/ 🔅 > library(moderndive) > bowl # A tibble: 2,400 x 2 ball_ID color <int> <chr> 1 white Population 2 white 3 white 4 red 5 white 6 white 7 red 8 white 9 red 10 white # with 2,390 more rows > Console ~/ 🔿 Sampling > bowl %>% Inference + rep_sample_n(size = 50, reps = 1) # A tibble: 50 x 3 # Groups: replicate [1] replicate ball_ID color <int> <int> <chr> 226 white 1304 red Sample 1230 white 984 white 68 white 1965 white 431 white <u>1</u>184 white 1610 red 978 white 1 with 40 more rows Distribution of 1000 proportions red 300 Sampling 200 -conut **Distributions &** Standard Errors 100p(1-p)SE =015 02 035 03 035 05 Proportion red of 50 balls 0 0.2 0.3 0.4 0.5 0.6 Proportion of 50 balls that were red

Chapter 8: Sampling

Terminology, definitions, & notation 😡

[isostat] Is notation and language a barrier to students learning introductory statistics? $\Diamond = \Box$ Statistics/ISOSTAT ×

I don't think the issue is using percentages but rather using percentages while giving students a formula for proportions;-)

Our approach: Do this first...

Terminology, definitions, & notation

Then this...

	17 (BEE 0.0) 000		ing for inforence	
Scenario	Population parameter	Notation	Point estimate	Notation.
1	Population proportion	p	Sample proportion	\hat{p}

TABLE 8.6: Scenarios of sampling for inference

Terminology, definitions, & notation

Then this... Then generalize & transfer...

TABLE 8.6: Scenarios of sampling for inference

Scenario	Population parameter	Notation	Point estimate	Notation.
1	Population proportion	p	Sample proportion	\hat{p}
2	Population mean	μ	Sample mean	$\widehat{\mu}$ or \overline{x}
3	Difference in population proportions	p_1-p_2	Difference in sample proportions	${\hat p}_1 - {\hat p}_2$
4	Difference in population means	$\mu_1-\mu_2$	Difference in sample means	$\overline{x}_1 - \overline{x}_2$
5	Population regression slope	eta_1	Sample regression slope	${\widehat eta}_1$ or b_1
6	Population regression intercept	eta_0	Sample regression intercept	${\widehat eta}_0$ or b_0

From moderndive Ch 8.5.2

Chap 9: Confidence Intervals

ModernDive @ModernDive · Mar 27

 \sim

Hey intro stats profs! Do you teach statistical inference w/ the bootstrap method? Do you get Q's like "Why do we resample WITH replacement?" or "How many samples are there?" If so, consider doing "tactile resampling" first, THEN %>% do "virtual resampling" the @moderndive way!

- 1. What are we doing ?
 - Studying effect of sampling variation on estimates
 - Studying effect of sample size on sampling variation
- 2. Why are we doing this 🧐
 - So students don't get lost in abstraction & never lose e on what statistical inference is about.

Chap 10: Hypothesis Testing via infer

Replying to @AmeliaMN @djnavarro and 3 others

Indeed! Per @crite: "the infer package makes statistical inference tidy & transparent!" github.com/rudeboybert/JS ...

infer package

- Live <u>code demo</u> of constructing null distribution
- Comparing the what vs the how
 - The what is the same as Rossman/Chance <u>applets</u> & <u>StatKey</u> by Lock5
 - The how is different: "Getting under the hood" via tidyverse
- More on the what
 - Convincing students there is only one test
 - <u>Bridging gap</u> with traditional formula-based methods/approximations. Ex: Central Limit Theorem

Goal 1: Modeling with Regression 1. Data: evals 2. Exploratory Data Analysis

evals	×			
		Filter		
^	ID [‡]	score 🗘	age 🍦	gender 🍦
1	1	4.7	36	female
2	2	4.1	36	female
3	3	3.9	36	female
4	4	4.8	36	female
5	5	4.6	59	male
6	6	4.3	59	male
7	7	2.8	59	male
8	8	4.1	51	male
9	9	3.4	51	male
10	10	4.5	40	female
11	11	3.8	40	female
12	12	4.5	40	female

3. Regression Coeff

Early: Descriptive regression

4. Regression Table

<pre>Console ~/ imes > score_model <- > get_regression # A tibble: 4 x</pre>	lm(score _table(sco 7	~ age * go pre_model)	ender, dato	a = evals	5)	
term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>
1 intercept	4.88	0.205	23.8	0	4.48	5.29
2 age	-0.018	0.004	-3.92	0	-0.026	-0.009
3 gendermale	-0.446	0.265	-1.68	0.094	-0.968	0.076
4 age:gendermale	0.014	0.006	2.45	0.015	0.003	0.024
>			1			

Later: Inference for Regression

Regression wrapper() functions

```
Console ~/ 🔿
> library(tidyverse)
> library(moderndive)
> # Convert to tibble
> mtcars <- mtcars %>%
+ as_tibble(rownames_to_column(mtcars))
> # Fit lm
> mpg_model <- lm(mpg ~ hp, data = mtcars)</pre>
> # Two options
> summary(mpg_model)
Call:
lm(formula = mpg \sim hp, data = mtcars)
Residuals:
    Min
            10 Median
                            30
                                   Max
-5.7121 -2.1122 -0.8854 1.5819 8.2360 summary() encourages
                                          p-value stargazing!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.09886 1.63392 18.421 < 2e-16 ***
           -0.06823
                       0.01012 -6.742 1.79e-07 ***
hp
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
                                     Why not a tibble w/ Cl's?
> get_regression_table(mpg_model)
# A tibble: 2 x 7
           estimate std_error statistic p_value lower_ci upper_ci
  term
  <chr>
               <db1>
                         \langle db1 \rangle
                                   <db1>
                                          <db1>
                                                   <db1>
                                                            <db1>
                                              0
                                                  26.8
                                                           33.4
1 intercept
             30.1
                         1.63
                                  18.4
2 hp
              -0.068
                         0.01
                                  -6.74
                                              0
                                                 -0.089
                                                           -0.048
>
```

Regression wrapper() functions

ModernDive @ModernDive · Mar 13

"Hold up, isn't that just broom::tidy()?" You betcha! But we made things novice friendly by renaming everything, even the function names! Lay e on the get_regression_points() wrapper to broom::augment()!

Make partial residual plots from scratch instead of w/ plot.lm()!

10 1	ttea .s	e.fit	.resid	.hat	.sigma	.cooksd	.std.resid
<dbl> <dbl> <</dbl></dbl>	:dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>
21 110	22.6	0.777	-1.59	0.0405	3.92	0.00374	-0.421
21 110	22.6	0.777	-1.59	0.0405	3.92	0.00374	-0.421
22.8 93	23.8	0.873	-0.954	0.0510	3.92	0.00173	-0.253
21.4 110	22.6	0.777	-1.19	0.0405	3.92	0.002 <u>10</u>	-0.315
18.7 175	18.2	0.741	0.541	0.036 <u>8</u>	3.93	0.000 <u>389</u>	0.143
18.1 105	22.9	0.803	-4.83	0.0432	3.82	0.0369	-1.28
14.3 245	13.4	1.21	0.917	0.097 <u>6</u>	3.92	0.00338	0.250
24.4 62	25.9	1.10	-1.47	0.080 <u>5</u>	3.92	0.006 <u>88</u>	-0.396
22.8 95	23.6	0.860	-0.817	0.049 <u>6</u>	3.93	0.00123	-0.217
19.2 123	21.7	0.724	-2.51	0.0351	3.90	0.007 <u>94</u>	-0.661
A tibble: 32 x 5 rowname	mp	ig h	1p mpg_l	hat resi	idual	"Aht	Much
<chr></chr>	<db1< th=""><th>> <db1< th=""><th>> <dl< th=""><th>DL></th><th><dbl></dbl></th><th></th><th>I. Mach</th></dl<></th></db1<></th></db1<>	> <db1< th=""><th>> <dl< th=""><th>DL></th><th><dbl></dbl></th><th></th><th>I. Mach</th></dl<></th></db1<>	> <dl< th=""><th>DL></th><th><dbl></dbl></th><th></th><th>I. Mach</th></dl<>	DL>	<dbl></dbl>		I. Mach
Mazda RX4	21	11	.0 2	2.6 -1	1.59	De	tter!"
		11	0 /	2.6 -	1 50		
Mazda RX4 Wag	21	11			1.55		
Mazda RX4 Wag Datsun 710	21 22.	8 9	3 23	3.8 -6	0.954		$\overline{}$
Mazda RX4 Wag Datsun 710 Hornet 4 Drive	21 22. 21.	8 9 4 11	03 23 10 22	3.8 - (2.6 - 1	0.954 1.19		\checkmark
Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabo	21 22. 21. ut 18.	8 9 4 11 7 17	3 2 03 2 10 2 75 1 15 2	3.8 -6 2.6 -1 8.2 6	0.954 1.19 0.541		
Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabo Valiant	21 22. 21. ut 18. 18.	8 9 4 11 7 17 1 10	03 2: 10 2: 75 18 15 1:	3.8 -6 2.6 -1 8.2 6 2.9 -4	0.954 1.19 0.541 4.84		
Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabo Valiant Duster 360	21 22. 21. 18. 18. 14. 24	8 9 4 11 7 17 1 10 3 24	3 2: 03 2: 10 2: 10 2: 15 1: 15 1: 12 2:	3.8 -6 2.6 -1 8.2 6 2.9 -4 3.4 6	0.954 1.19 0.541 4.84 0.917		
Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabo Valiant Duster 360 Merc 240D Merc 230	21 22. 21. 18. 18. 14. 24. 22	8 9 4 11 7 17 1 10 3 24 4 6 8 9	3 2: 03 2: 10 2: 10 2: 15 1: 15 2: 15 2: 15 2: 15 2:	3.8 -(2.6 -1 8.2 (2.9 -4 3.4 (5.9 -1 3.6 -0	0.954 1.19 0.541 4.84 0.917 1.47		
Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabo Valiant Duster 360 Merc 240D Merc 230 Merc 280	21 22. 21. 18. 18. 14. 24. 22.	8 9 4 11 7 17 1 10 3 24 4 6 8 9 2 12	3 2: 3 2: 10 2: 10 2: 15 1: 15 1: 15 2: 15 2: 15 2: 15 2: 15 2: 15 2: 15 2: 15 2: 15 2: 15 2:	3.8 -(2.6 -1 8.2 (2.9 -4 3.4 (5.9 -1 3.6 -(1.7 -1	0.954 1.19 0.541 4.84 0.917 1.47 0.817		

Conclusion

Resources

- Two versions of moderndive
 - 1. Development (being edited): moderndive.netlify.com
 - 2. Latest release (updated x2 yearly): moderndive.com
- On GitHub at <u>github.com/moderndive/</u>
 - 1. bookdown source code for book
 - 2. moderndive package source code
- Course <u>webpage</u> from Spring 2019
- moderndive mailing list: <u>eepurl.com/cBkltf</u>

Timeline

- Now: Development version on <u>moderndive.netlify.com</u> being edited:
 - Ch9 on CI, Ch10 on HT need cleaning
 - #Ch11 on inference for regression ##
- Late-June: Preview of print edition available on <u>moderndive.com</u>
- Late-July: Posting labs/problems sets & example final project samples
- Fall 2019: Print edition available!

The R Series

Thank you!