Fusing disparate measurement data for forecasting the growth of trees via Hidden Markov Models

Prof. Albert Y. Kim UMass Amherst Statistics Seminar Series Friday, January 22, 2021

Diameter at Breast Height (dbh)

After species & location, one of the most informative variables about a tree is dbh

25.6 ha = 35.85 soccer fields

25.6 ha = 35.85 soccer fields

Census 2018: 72,555 cataloged trees

spe	cies						
•	acne	•	coam	•	loma	•	rhpe
•	acpl	•	cofl	•	nysy	•	romu
•	acru	•	crpr	•	pato	•	rops
•	acsp	•	crsp	•	pipu	•	rual
•	aial	•	divi	•	pist	•	rupe
•	amar	•	elum	•	pivi	•	ruph
•	astr	•	eual	•	ploc	•	saal
•	beth	•	fagr	•	prav	•	saca
•	caca	•	fram	•	prpe	•	tiam
•	caco	•	frni	•	prse	•	ulam
•	cade	•	frpe	•	prsp	•	ulru
•	cagl	•	frsp	•	qual	•	ulsp
•	caovl	•	havi	•	quco	•	unk
•	casp	•	ilve	•	qufa	•	viac
•	cato	•	juci	•	qumi	•	vipr
•	ceca	•	juni	•	qupr	•	vire
•	ceoc	•	juvi	•	quru		
•	chvi	•	libe	•	qusp		
•	coal	•	litu	•	quve		

25.6 ha = 35.85 soccer fields

Census 2018: 72,555 cataloged trees

dbh >10mm are tagged

auve

rhpe

rual rupe

Data on GitHub

\mathbf{O}	Search	or jump t	0		/	Pu	ll request	s Issues	Code	spaces	Mark	ketpla	ice Expl	ore	
A SC	A SCBI-ForestGEO / Dendrobands Image: Construction of the second seco														
<> C	<> Code (!) Issues 3 1 Pull requests (> Actions [!!] Projects () Wiki (!) Security (> Insights														
្រៃ m	P master - Dendrobands / data / scbi.dendroAll_2020.csv Go to file														
	rudeboybert Replace text month coding with integer month coding for 2019 & 2020. F Latest commit aa41236 on Jul 3 🕓 History														
৪২ 4	At 4 contributors 🔹 🗊 😰														
1280	1280 lines (1280 sloc) 190 KB 🛛 🖓 🖞														
Q Sea	Q Search this file														
1	tag	stemtag	survey.ID	year	month	day	biannual	intraannual	sp	quadrat	Ix	ly	measure	codes	notes
2	10469	1	2020.01	2020	3	11	1	0	litu	109	9.7	1	NA	RE	window too large to measure
3	3 10587 1 2020.01 2020 3 11 1 0 0 litu 113 2.6 13 61.41 NA NA							NA							
4	10609	1	2020.01	2020	3	11	1	0	cagl	111	19.5	2.9	81.03	NA	double-checked

Equipment to measure doh

- 1. Measuring tape. Call this "census" data
- 2. Tree coring + dendrochronology.Call this "core" data

Equipment to measure doh

3. Dendrobands + Calipers: Call this "dendro" data

Comparison Chart

Data source	Measurement	Cost	Sources of Error?
Census via tape	Diameter	Cheap	Large variation in dbh 📏 technique
Tree coring	Ring width increment	Expensive	Standardized, cores are dried, no bark effects
Intraannual dendroband (every 2 weeks)	Increment (from baseline)	High setup, rapid follow-up	Climate induced variation in bark & device (-'ve growth)
Biannual dendroband (start & end of year)	same	same	+ Less 99 for

Can we fuse these disparate data sources into a single model to forecast the growth of trees?

• Hidden: "Data fusion" via latent variables In our case: "true" dbh

- Hidden: "Data fusion" via latent variables In our case: "true" dbh
- Markov: y_t depends on y_{t-1}

- Hidden: "Data fusion" via latent variables In our case: "true" dbh
- Markov: y_t depends on y_{t-1}
- Partition sources of error into those that

- Hidden: "Data fusion" via latent variables In our case: "true" dbh
- Markov: y_t depends on y_{t-1}
- Partition sources of error into those that
 - Are not of direct interest

- Hidden: "Data fusion" via latent variables In our case: "true" dbh
- Markov: y_t depends on y_{t-1}
- Partition sources of error into those that
 - Are not of direct interest
 - Are "one and done" i.e. measurement error

- Hidden: "Data fusion" via latent variables In our case: "true" dbh
- Markov: y_t depends on y_{t-1}
- Partition sources of error into those that
 - Are not of direct interest
 - Are "one and done" i.e. measurement error
 - Propagate when forecasting

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

• $dbh_{i,t}$: "True" latent dbh for individual *i* at time *t*

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

- $dbh_{i,t}$: "True" latent dbh for individual *i* at time *t*
- β_0 : Baseline growth

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

- $dbh_{i,t}$: "True" latent dbh for individual *i* at time *t*
- β_0 : Baseline growth
- β_i : Individual tree *i* random effect

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

- $dbh_{i,t}$: "True" latent dbh for individual *i* at time *t*
- β_0 : Baseline growth
- β_i : Individual tree *i* random effect
- β_t : Time point *t* random effect

$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

- $dbh_{i,t}$: "True" latent dbh for individual *i* at time *t*
- β_0 : Baseline growth
- β_i : Individual tree *i* random effect
- β_t : Time point *t* random effect
- $\epsilon \sim \text{Normal}\left(0, \sigma_{\epsilon}^{2}\right)$

	Census	Core	Biannual dendroband	Intraannual dendroband
	(diameter)	(ring width increment)	(increment)	(increment)
	<i>CeN_{i,t}</i>	<i>CORE_{i,t}</i>	$den_{i\ t}^{ba}$	den^{ia}_{it}
Observed Data			1,1	

Increments =
$$dbh_{i,t-1} - dbh_{i,t}$$

Fixed Effects $\beta_0, \beta_{x_1}, \dots$

Model as of 2021/1/22

Model as of 2021/1/22

Model as of 2021/1/22

Results

 n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)

- n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)
- Implemented in JAGS

- n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)
- Implemented in JAGS
- 30k draws from posterior minus 10% burn-in

- n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)
- Implemented in JAGS
- 30k draws from posterior minus 10% burn-in
- Empirical Bayes (data informed) prior parameters

- n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)
- Implemented in JAGS
- 30k draws from posterior minus 10% burn-in
- Empirical Bayes (data informed) prior parameters
- Forecast into 2020 2022 by treating these years as missing values

• mean $\beta_0 \sim 1$ cm growth per year (needs sanity checking)

- mean $\beta_0 \sim 1$ cm growth per year (needs sanity checking)
- $\sigma_{cen} > > \sigma_{den}$

- mean $\beta_0 \sim 1$ cm growth per year (needs sanity checking)
- $\sigma_{cen} > > \sigma_{den}$
- Year-to-year variation in growth > Between individuals variation

- mean $\beta_0 \sim 1$ cm growth per year (needs sanity checking)
- $\sigma_{cen} > > \sigma_{den}$
- Year-to-year variation in growth > Between individuals variation
- σ_{ϵ} = remaining process error that propagates in forecasts across time

One particular tulip poplar

tag_stem	type	sp	`2007`	`2008`	`2009`	`2010`	`2011`	`2012`	`2013`	`2014`	`2015`	`2016`	`2017`	`2018`	`2019`
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>
30339_3	census	litu	NA	148.	NA	NA	NA	153.	NA	NA	NA	NA	NA	160	NA
30339_3	dendroband	litu	NA	NA	NA	NA	NA	NA	149.	155.	156.	157.	157.	159.	160.

One particular tulip poplar diameter

y = modeled true latent $dbh_{i,t}$

27

Future Work

• Add remaining data:

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing τ_{den}^{ba} versus τ_{den}^{ia} ?

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing τ_{den}^{ba} versus τ_{den}^{ia} ?
- Improve model for latent variable

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing τ_{den}^{ba} versus τ_{den}^{ia} ?
- Improve model for latent variable
 - $dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \ldots + \epsilon$

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing τ_{den}^{ba} versus τ_{den}^{ia} ?
- Improve model for latent variable
 - $dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \ldots + \epsilon$
 - Covariates: In particular species & starting diameter

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing τ_{den}^{ba} versus τ_{den}^{ia} ?
- Improve model for latent variable
 - $dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \ldots + \epsilon$
 - Covariates: In particular species & starting diameter
- Choose appropriate time scale for *t*

Thanks!

Slides on Twitter @rudeboybert

Intra-annual effect of climate

Year Random Effects

Individual Random Effects

Individual tree random effects

Offset in dbh (mm)

Distribution of all MCMC draws from posterior for each tree

