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Diameter at Breast Height (dbh)

After species & location, one of the most informative 
variables about a tree is dbh
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Smithsonian Conservation Biology Institute

25.6 ha = 35.85 soccer fields

dbh >10mm 
are tagged
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Data on GitHub
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Equipment to measure doh

1. Measuring tape. Call 
this “census” data 

2. Tree coring + 
dendrochronology. 
Call this “core” data
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Equipment to measure doh

3. Dendrobands + Calipers: 
Call this “dendro” data
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Comparison Chart

Data source Measurement Cost Sources of Error?

Census via tape Diameter Cheap
Large variation in 
dbh 📏  technique

Tree coring Ring width 
increment

Expensive
Standardized, cores 
are dried, no bark 

effects

Intraannual 
dendroband (every 

2 weeks)

Increment (from 
baseline)

High setup, rapid 
follow-up

Climate induced 
variation in bark & 

device (-‘ve growth)

Biannual 
dendroband (start 

& end of year)
same same

+ Less 👀  for:
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Goal 🎯🎯🎯

Can we fuse these disparate data 
sources into a single model to 
forecast the growth of trees?
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Hidden Markov Models

• Hidden: “Data fusion” via latent variables 
In our case: “true” dbh

• Markov:  depends on yt yt−1
• Partition sources of error into those that

• Are not of direct interest
• Are “one and done” i.e. measurement error
• Propagate when forecasting
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Minimum Viable Product

dbhi,t = dbhi,t−1 + β0 + βi + βt + ϵ

•  : “True” latent dbh for individual  at time  dbhi,t i t
•  : Baseline growthβ0
•  : Individual tree  random effectβi i
•  : Time point  random effectβt t
• ϵ ∼ Normal (0,σ2

ϵ )
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Model

Clark 2007

http://tree%20growth%20inference%20and%20prediction%20from%20diameter%20censuses%20...esajournals.onlinelibrary.wiley.com%20%E2%80%BA%20doi
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Model

Increments = dbhi,t−1 − dbhi,t
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Model
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Model

FYI: Express variances via precision τ =
1
σ2
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Model

Moral: only error this propagates across time in forecasts
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Model as of 2021/1/22
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Model as of 2021/1/22

Using only first value per year 
as post-processed diameter 

(not increment)

 time scale in yearst  time scale in yearst

 time scale in yearst

Moral: only error this propagates across time in forecasts
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MCMC specifications

• n = 155 trees with intraannual dendrobands 
(tend to be larger canopy trees)

• Implemented in JAGS
• 30k draws from posterior minus 10% burn-in
• Empirical Bayes (data informed) prior 

parameters
• Forecast into 2020 - 2022 by treating these 

years as missing values
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Posterior Distributions

• mean  ~ 1cm growth per year (needs sanity checking)β0
•  σcen > > σden
• Year-to-year variation in growth > Between individuals variation
•  = remaining process error that propagates in forecasts across timeσϵ
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One particular tulip poplar
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One particular tulip poplar diameter
y = modeled true latent dbhi,t

Dendroband installed in 2013



Future Work
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TODO

• Add remaining data:
• All, not just first yearly observation, intra-annual 

dendroband
• All biannual dendroband
• Tree coring data

• Merge dendroband after comparing  versus ?τba
den τia

den
• Improve model for latent variable

• dbhi,t = dbhi,t−1 + β0 + … + ϵ
• Covariates: In particular species & starting diameter

• Choose appropriate time scale for t



Thanks!


Slides on Twitter 
@rudeboybert
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Intra-annual effect of climate
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Year Random Effects
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Individual Random Effects


