Fusing disparate measurement data for forecasting the growth of trees via Hidden Markov Models

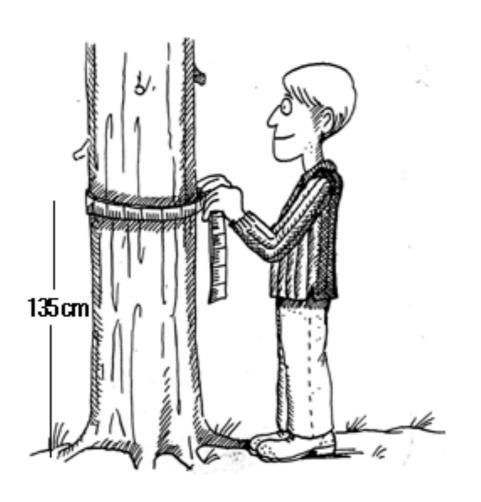
Prof. Albert Y. Kim

UMass Amherst Statistics Seminar Series
Friday, January 22, 2021

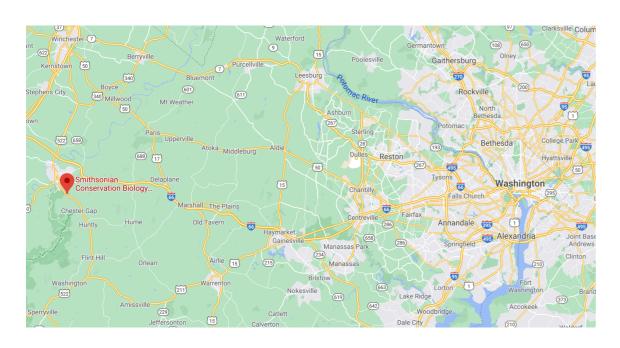
Context

Diameter at Breast Height (dbh)

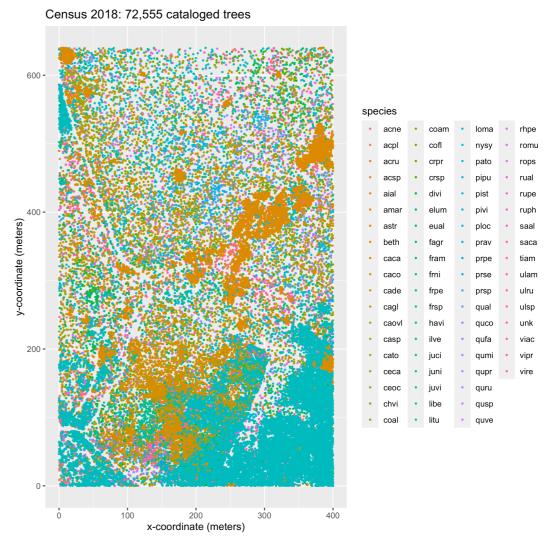
After species & location, one of the most informative variables about a tree is dbh



Smithsonian Conservation Biology Institute

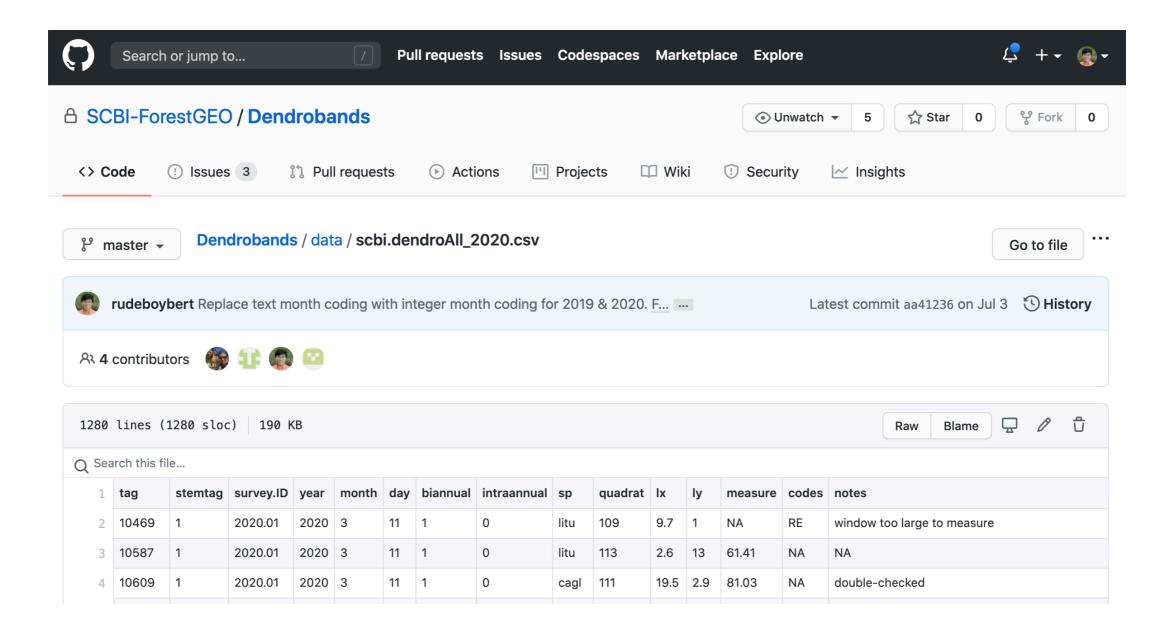


25.6 ha = 35.85 soccer fields



dbh >10mm are tagged

Data on GitHub



Equipment to measure doh

1. Measuring tape. Call this "census" data

2. Tree coring + dendrochronology.Call this "core" data

Equipment to measure doh

3. Dendrobands + Calipers: Call this "dendro" data

Comparison Chart

Data source	Measurement	Cost	Sources of Error?
Census via tape	Diameter	Cheap	Large variation in dbh \ technique
Tree coring	Ring width increment	Expensive	Standardized, cores are dried, no bark effects
Intraannual dendroband (every 2 weeks)	Increment (from baseline)	High setup, rapid follow-up	Climate induced variation in bark & device (-'ve growth)
Biannual dendroband (start & end of year)	same	same	+ Less 👀 for:

Can we fuse these disparate data sources into a single model to forecast the growth of trees?

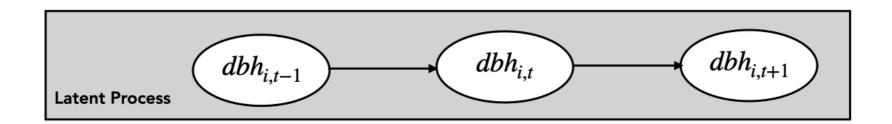
Hidden Markov Models

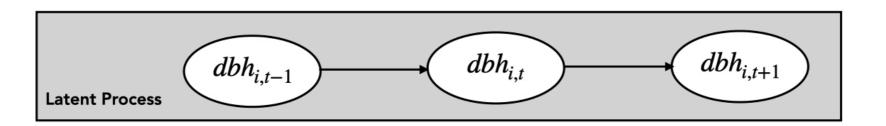
- Hidden: "Data fusion" via latent variables
 In our case: "true" dbh
- Markov: y_t depends on y_{t-1}
- Partition sources of error into those that
 - Are not of direct interest
 - Are "one and done" i.e. measurement error
 - Propagate when forecasting

Minimum Viable Product

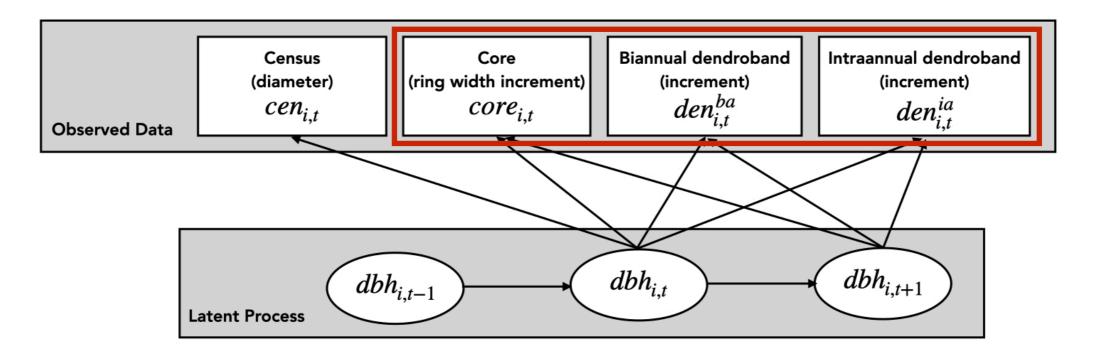
$$dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \beta_i + \beta_t + \epsilon$$

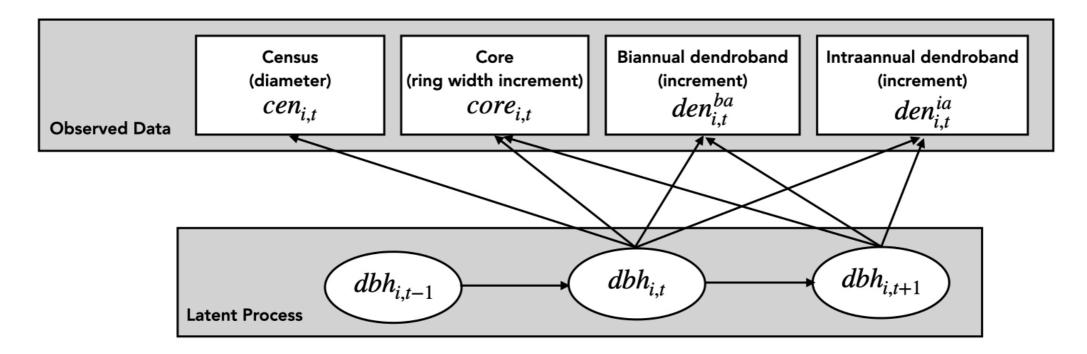
- $dbh_{i,t}$: "True" latent dbh for individual i at time t
- β_0 : Baseline growth
- β_i : Individual tree i random effect
- β_t : Time point t random effect
- $\epsilon \sim \text{Normal}\left(0,\sigma_{\epsilon}^2\right)$



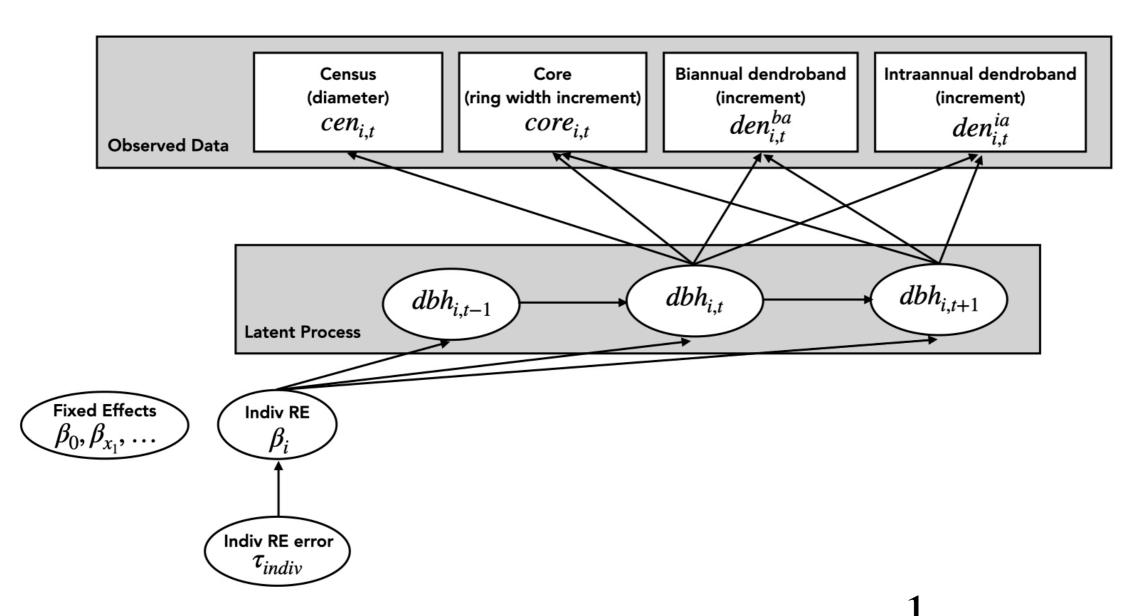


Increments =
$$dbh_{i,t-1} - dbh_{i,t}$$

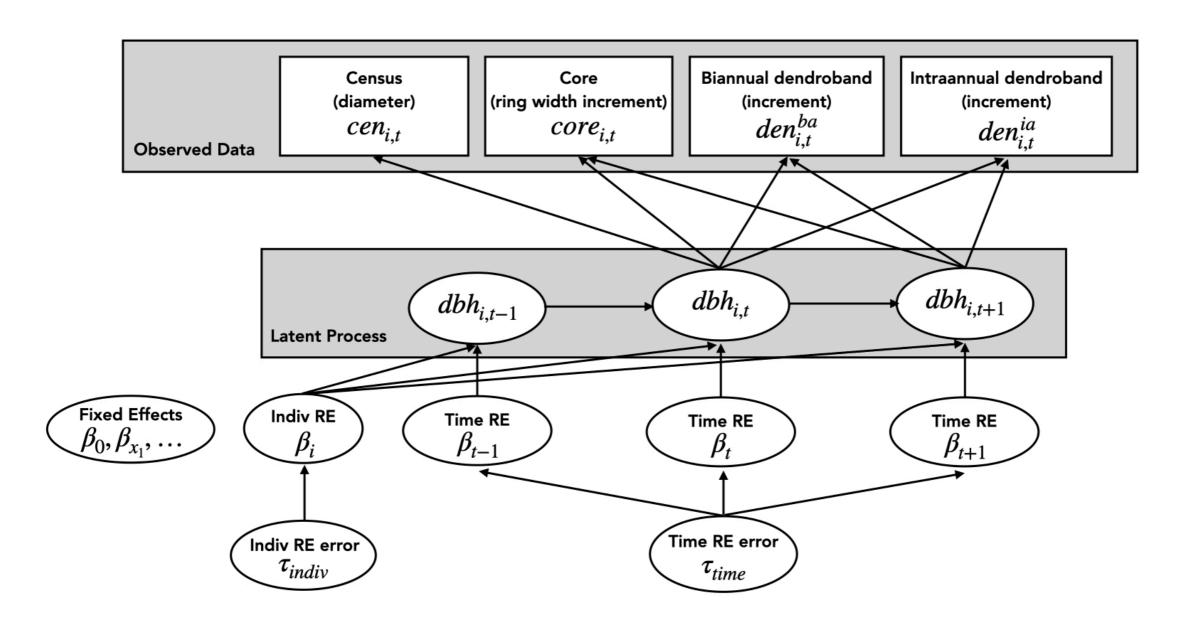


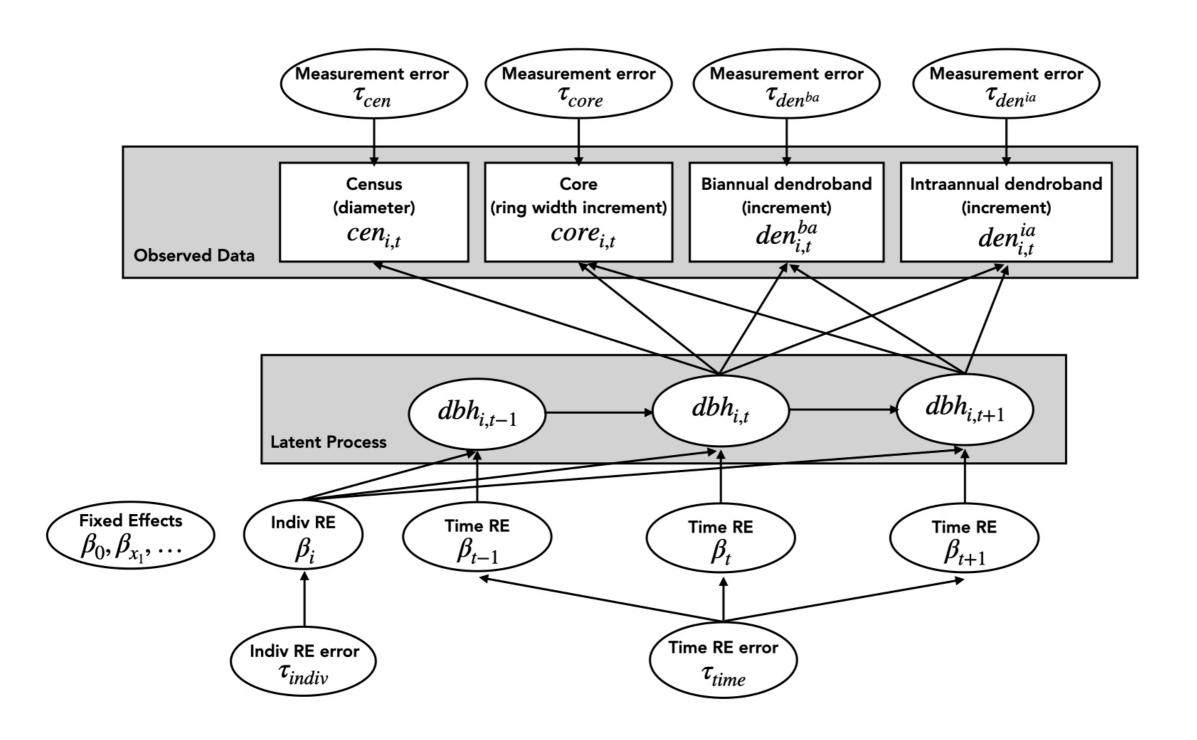


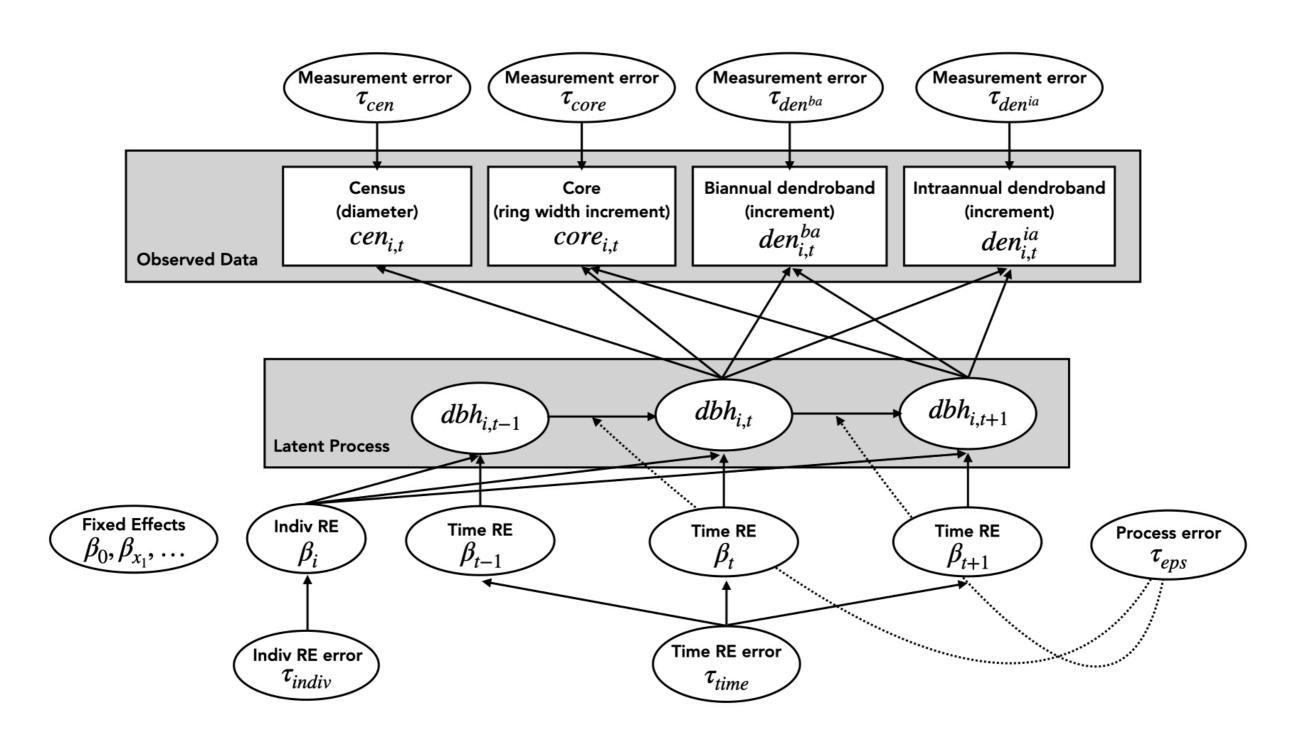
 $\overbrace{\beta_0,\beta_{x_1},\dots}^{\mathsf{Fixed Effects}}$

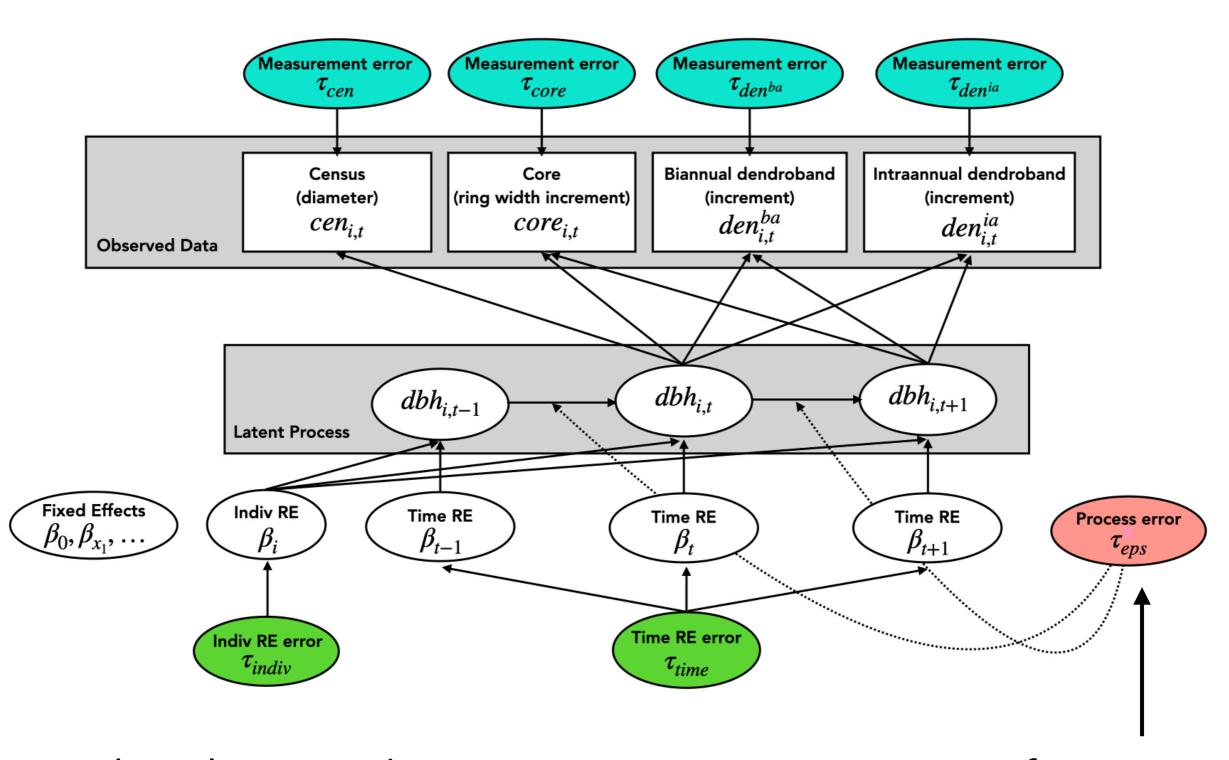


FYI: Express variances via precision $\tau = \frac{1}{\sigma^2}$



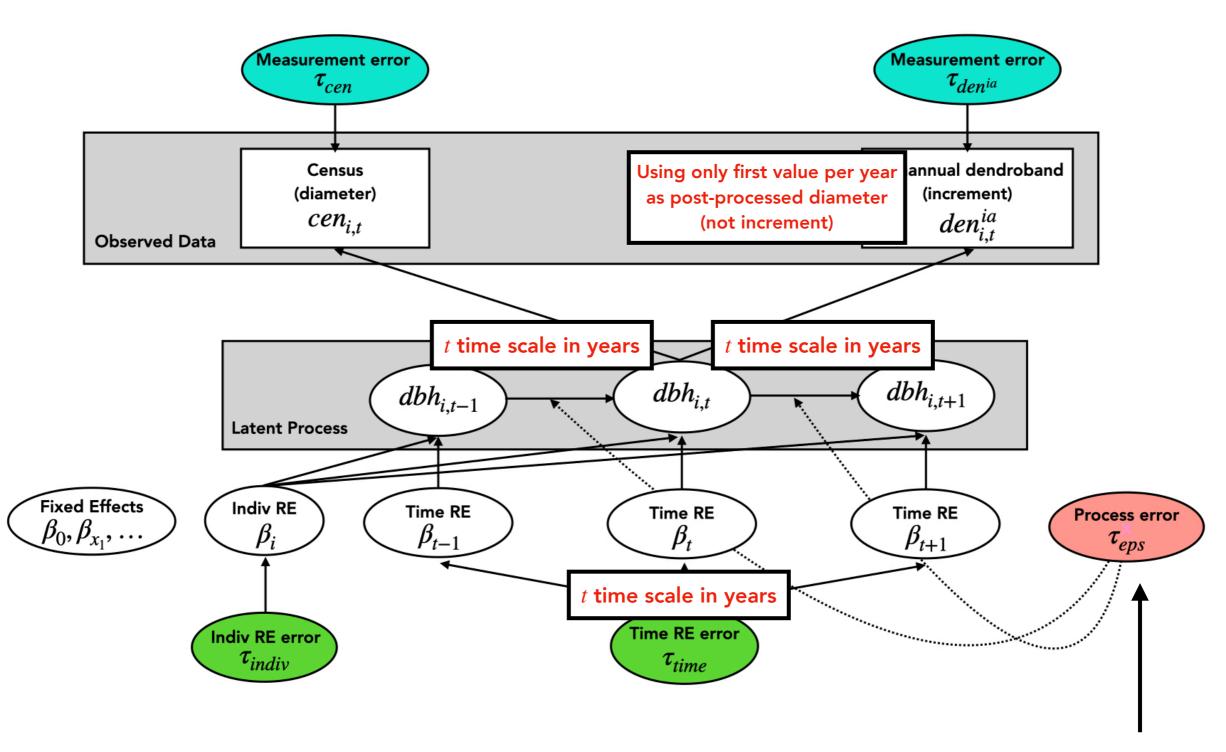






Moral: only error this propagates across time in forecasts

Model as of 2021/1/22



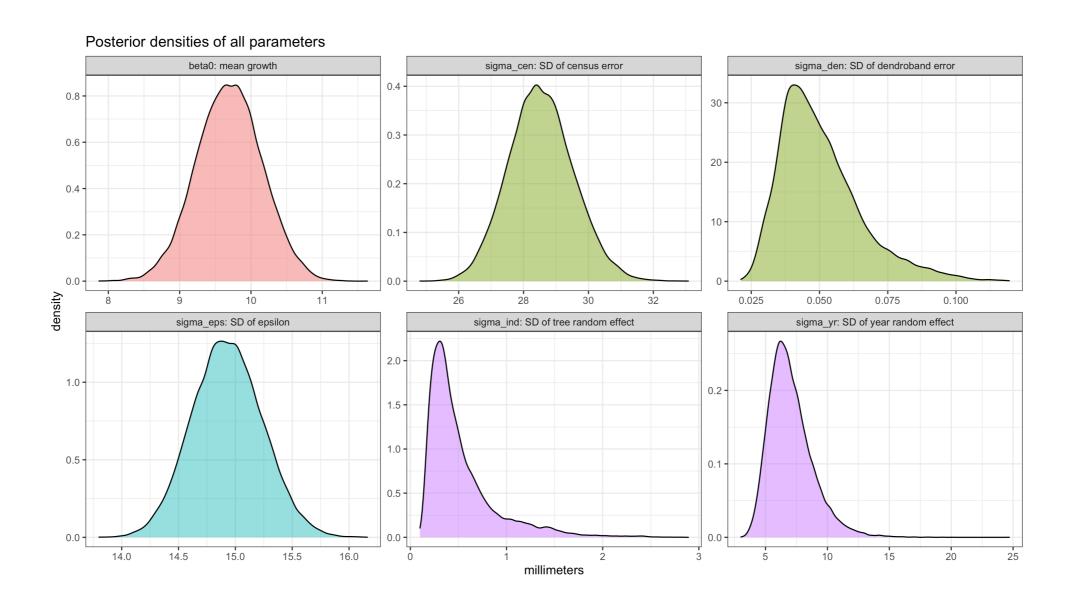
Moral: only error this propagates across time in forecasts

Results

MCMC specifications

- n = 155 trees with intraannual dendrobands (tend to be larger canopy trees)
- Implemented in JAGS
- 30k draws from posterior minus 10% burn-in
- Empirical Bayes (data informed) prior parameters
- Forecast into 2020 2022 by treating these years as missing values

Posterior Distributions



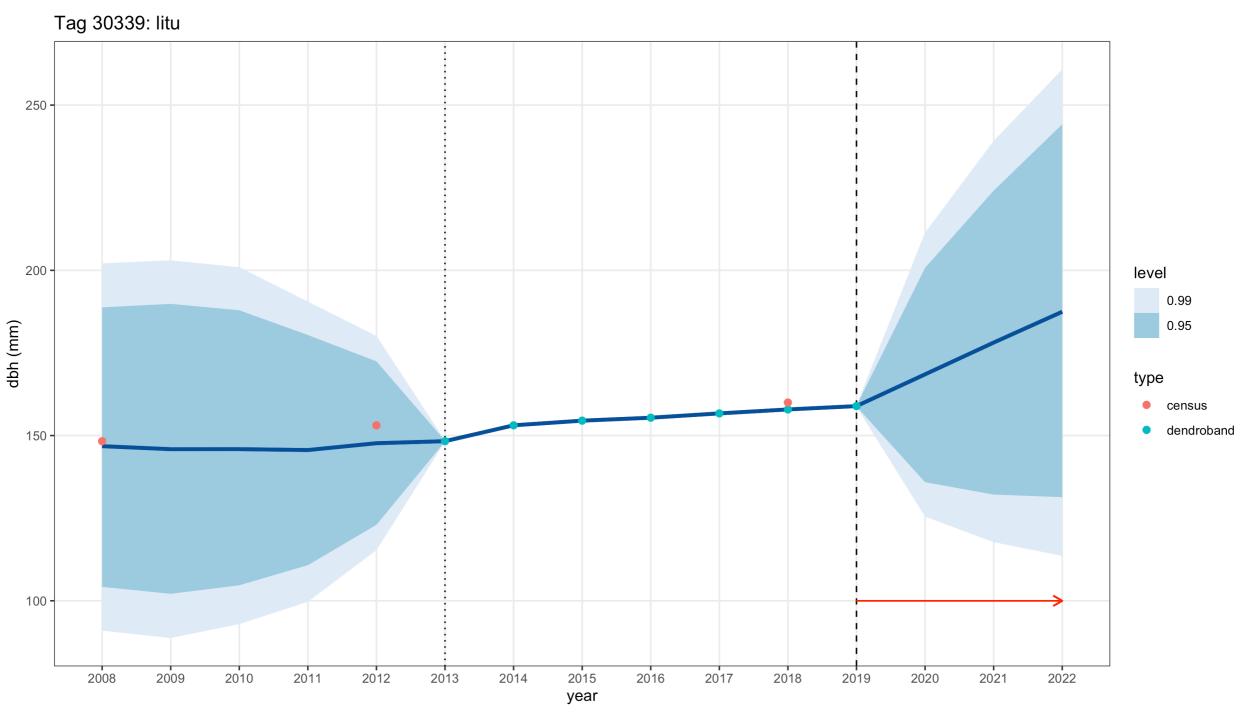
- mean β_0 ~ 1cm growth per year (needs sanity checking)
- $\sigma_{cen} >> \sigma_{den}$
- Year-to-year variation in growth > Between individuals variation
- σ_{ϵ} = remaining process error that propagates in forecasts across time

One particular tulip poplar

tag_stem	type	sp	`2007`	`2008`	`2009`	`2010`	`2011`	`2012`	`2013`	`2014`	`2015`	`2016`	`2017`	`2018`	`2019`
<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>
30339_3	census	litu	NA	148.	NA	NA	NA	153.	NA	NA	NA	NA	NA	160	NA
30339_3	dendroband	litu	NA	NA	NA	NA	NA	NA	149.	155.	156.	157.	157.	159.	160.

One particular tulip poplar diameter

 $y = modeled true latent <math>dbh_{i,t}$



Dendroband installed in 2013

Future Work

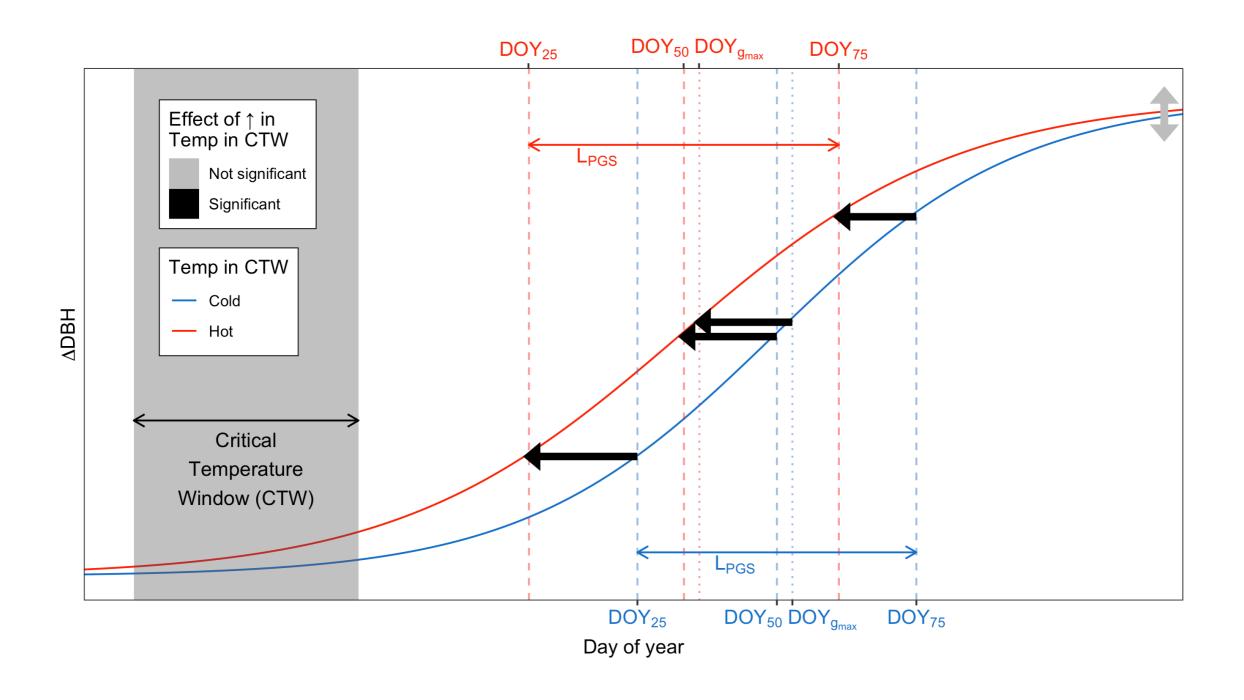
TODC

- Add remaining data:
 - All, not just first yearly observation, intra-annual dendroband
 - All biannual dendroband
 - Tree coring data
- Merge dendroband after comparing au_{den}^{ba} versus au_{den}^{ia} ?
- Improve model for latent variable
 - $dbh_{i,t} = dbh_{i,t-1} + \beta_0 + \dots + \epsilon$
 - Covariates: In particular species & starting diameter
- Choose appropriate time scale for t

Thanks!

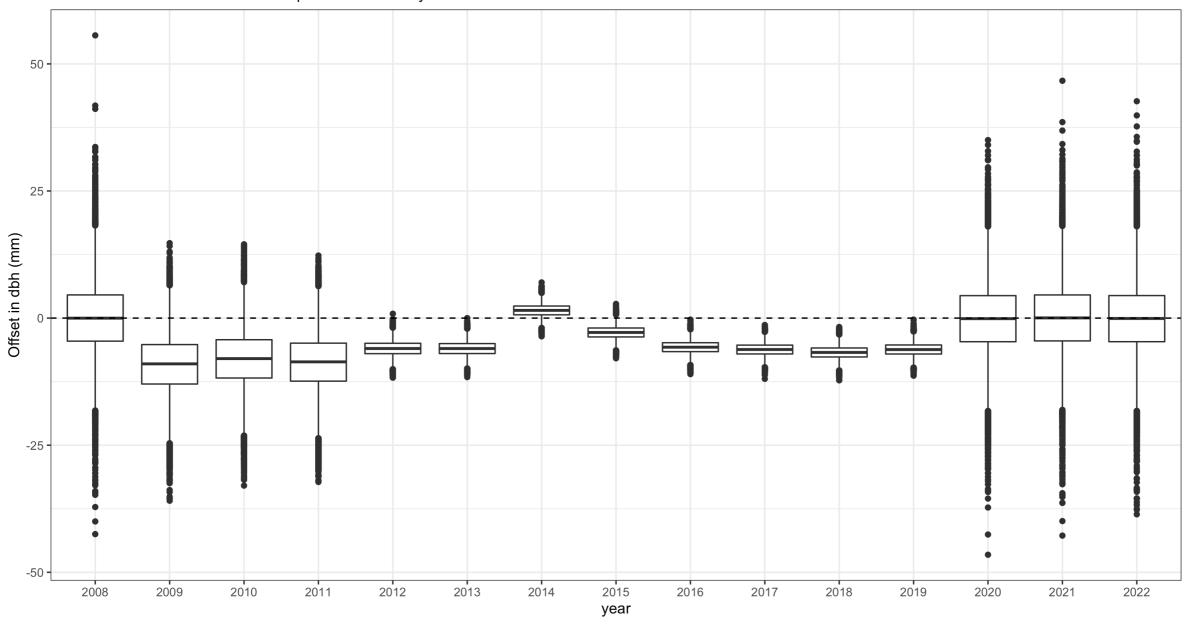
Slides on Twitter @rudeboybert

Intra-annual effect of climate



Year Random Effects

Distribution of all MCMC draws from posterior for each year



Individual Random Effects

Individual tree random effects

Distribution of all MCMC draws from posterior for each tree

