moderndive: statistical inference via the tidyverse

Albert Y. Kim

Jordan Moody

Ziwei "Crystal" Zang

Starry Zhou

USCOTS 2019 State College PA May 15-16

About us!

also my collaborators...

Jenny Smetzer

Chester Ismay

About you!

Say hi to your nearest neighbors! You'll be learning together!

Workshop Materials

- Schedule can be found at bit.ly/USCOTS2019
- All files can be found on Google Drive

My Context for moderndive

My students:

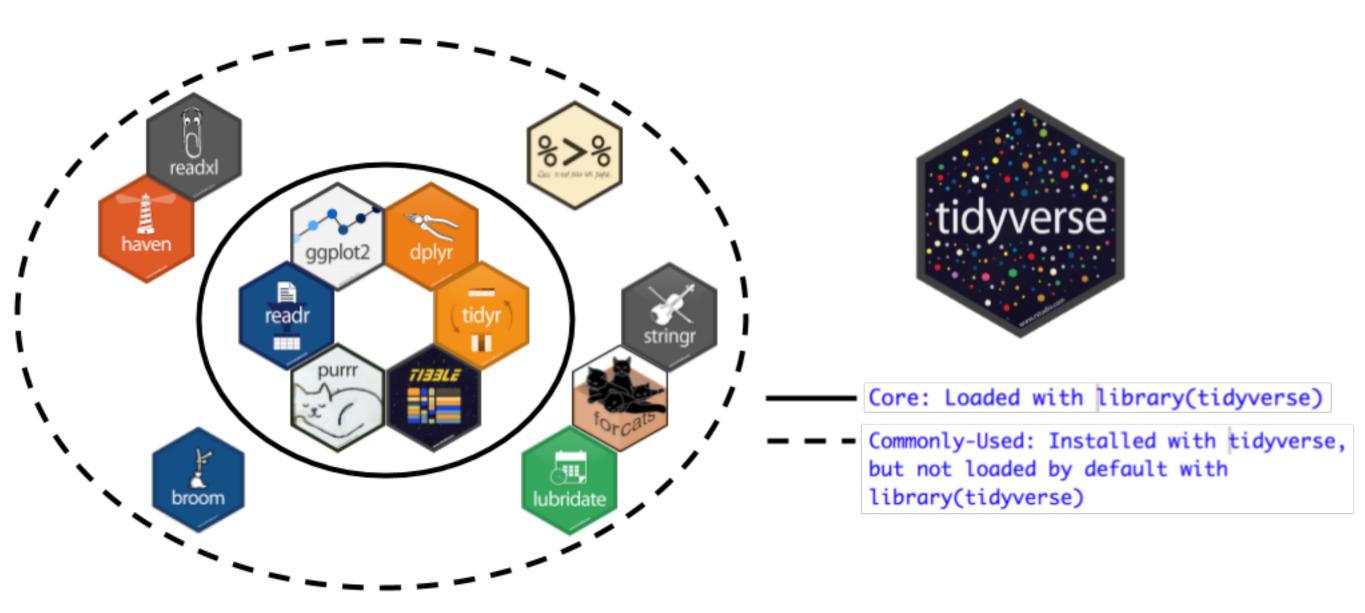
- Undergraduate-only liberal arts college
- Service intro stats course for all majors, all years
- Calculus is a pre-req only in name
- 13 weeks x (3 x 70min lectures + 75min lab)
- 29/40 had never coded in R prior

My goals:

- Goal 1: Sampling for inference
- Goal 2: Modeling with regression


via the Point A: tidyverse Point B: Modal 1st time Two goals stats student 1. Sampling for inference 2. Modeling with regression Calculus? Coding? thru & 🤤

Getting from Point A to Point B


The R Series

Statistical Inference via Data Science by way of

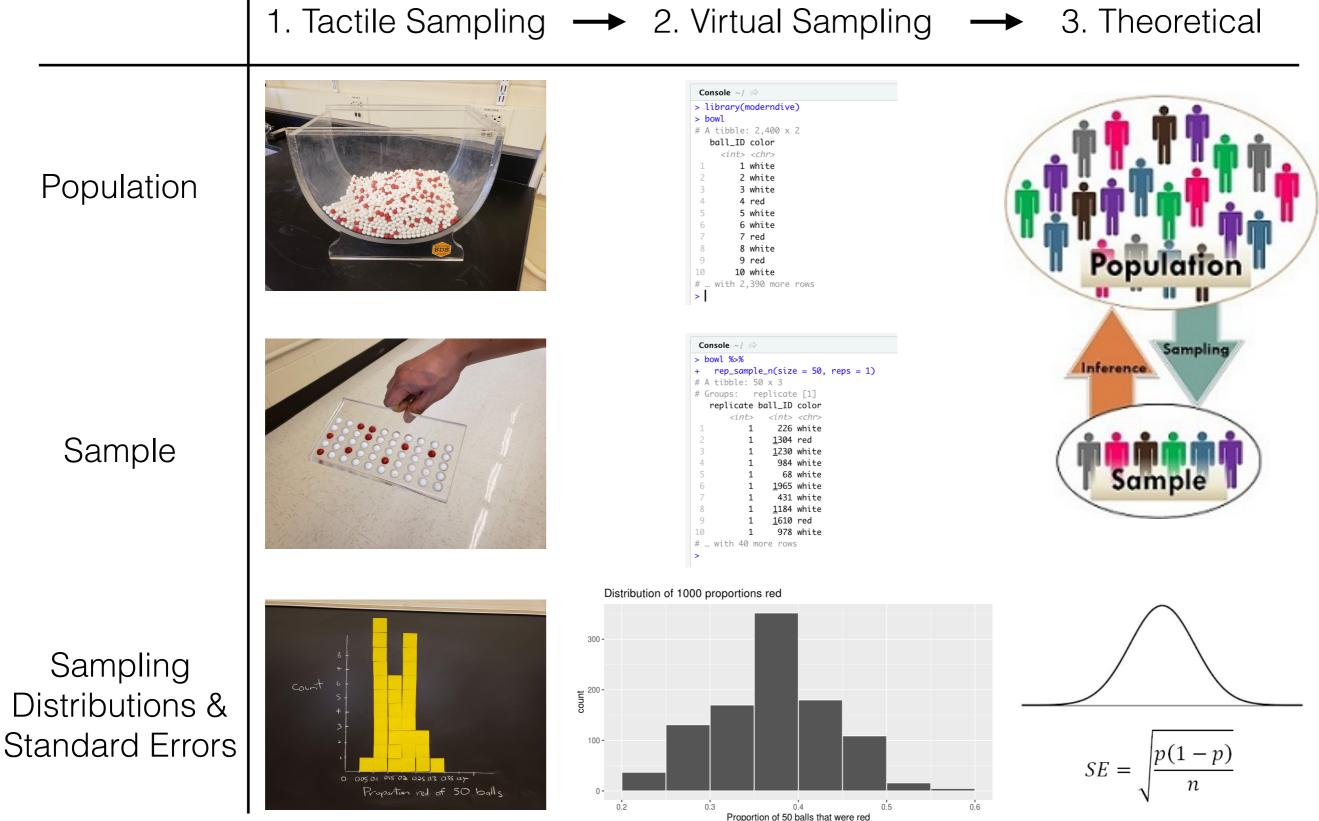
A moderndive into R & the tidyverse

What is the tidyverse?

- ggplot2 for data visualization
- dplyr for data wrangling
- readr for data importing

Why tidyverse? Some principles

From tidy tools manifesto: Say what?

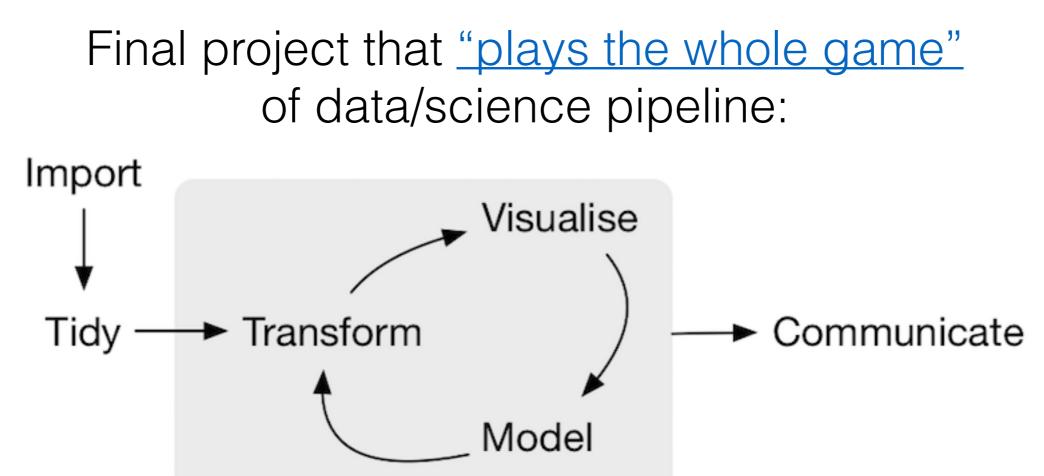

- 1. Reuse existing data structures
- 2. Compose simple functions with the pipe
- 3. Embrace functional programming
- 4. Design for humans

- 1. Don't reinvent the wheel!
- 2. Break down tasks step-bystep!
- 3. What is the <u>goal</u> of your code?
- 4. Make code understandable

Why tidyverse for stats newbies?

- In my opinion it's easier to learn than base R.
 <u>Others too</u>.
- It scales. You leverage an entire ecosystem of online developers and support: Google & StackOverflow
- Satisfy learning goals <u>while learning tools</u> <u>they can use beyond the classroom</u>

Goal 1: Sampling for Inference



Goal 2: Modeling with Regression 2. Exploratory Data Analysis 1. Data

evals Filter ID score age gender 1 1 4.7 36 female 2 2 4.1 36 female 3 3.9 36 female 4 4 4.8 36 female 4 4 4.8 36 female 6 6 4.3 59 male 6 6 4.3 59 male 6 6 4.3 59 male 7 2.8 59 male 9 3.4 51 male 10 10 4.5 40 female 11 11 3.8 40 female 11 11 3.8 40 female 11 12 12 4.5 40 female	Gender temale
3. Regression Coeff	4. Regression Table
Console ~/ ↔ > score_model <- lm(score ~ age * gender, data = evals)	Sampling Console ~/ 🔅
<pre>> get_regression_table(score_model) # A tibble: 4 x 7</pre>	<pre>> score_model <- lm(score ~ age * gender, data = evals) > get_regression_table(score_model)</pre>
term estimate	Confint's # A tibble: 4 x 7 term estimate std_error statistic p_value lower_ci upper_ci <chr> <dbl> <dbl <dbl="" <dbl<="" td=""></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></chr>
1 intercept 4.88	1 intercept 4.88 0.205 23.8 0 4.48 5.29
2 age -0.018 3 gendermale -0.446	Image: Second
4 age:gendermale 0.014	Hvp Tests 4 age:gendermale 0.014 0.006 2.45 0.015 0.003 0.024
Early: Descriptive regression	Later: Inference for Regression

Early: Descriptive regression

End Deliverable

Understand

Example <u>template</u> given to students this semester, based on work by Alexis Cohen, Andrianne Dao, & Isabel Gomez last semester.

Schedule

See Google Doc available at bit.ly/USCOTS2019

Keep in mind throughout...

- You are not currently you, but you are currently your students as best as you can imagine.
- In other words, these exercises are meant for your students!
- Ultimately where do I start? <u>Start small!</u>

Questions?

Activity: Your Birthday

For Every Chapter...

Slides on:

- 1. What are we doing ?
- 2. Why are we doing this 🤪
- 3. Opinions
- 4. Potential pitfalls 🔔

Followed by activities:

- 1. Chalk talk, pen/paper, or tactile exercise
- 2. Replicating exercise on computer
- 3. Exercise
- 4. Discussion

Chapter 2: Exploring data

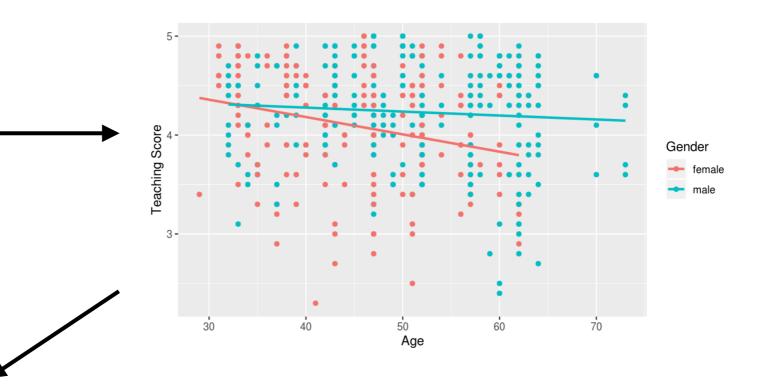
- 1. What are we doing ?
 - Getting used to workspace via data exploration
- 2. Why are we doing this 🤔
 - Getting them over initial \$\vec{\vec{Q}}\$ of coding
- 3. Our opinions
 - Stress importance of looking at RAW data values. Removing these layers of abstraction.
- 4. Potential pitfalls 🔔
 - Difference of R vs RStudio
 - Installing/loading packages
 - Error messages, warning messages, regular messages
 - Coding: both student self doubt & <u>lowered instructor</u> <u>expectations</u>

Chapter 3: Visualizing Data

- 1. What are we doing ?
 - Creating (colored) scatterplots, histograms, boxplots
- 2. Why are we doing this 🤔
 - Equip students with tools for both our goals
 - Exploratory data analysis!!!
- 3. Our opinions
 - Viewing all graphics through lens of the Grammar of Graphics (via ggplot2)
- 4. Potential pitfalls
 - Histograms & boxplots involve transformations of raw values
 - Coding ramps up: Reassure students! Encourage them to not code from scratch, rather copy/paste/ tweak

Chapter 4: Data Wrangling

- 1. What are we doing ?
 - Learning the pipe operator %>%
 - Wrangling/transforming data
- 2. Why are we doing this 🤥
 - Equip students with tools for both our goals
- 3. Our opinions
 - To completely shield students from any data wrangling is to betray true nature of work in our fields
- 4. Potential pitfalls 👃
 - How much wrangling should you require vs you curate yourself?


Chapter 5: "Tidy" data

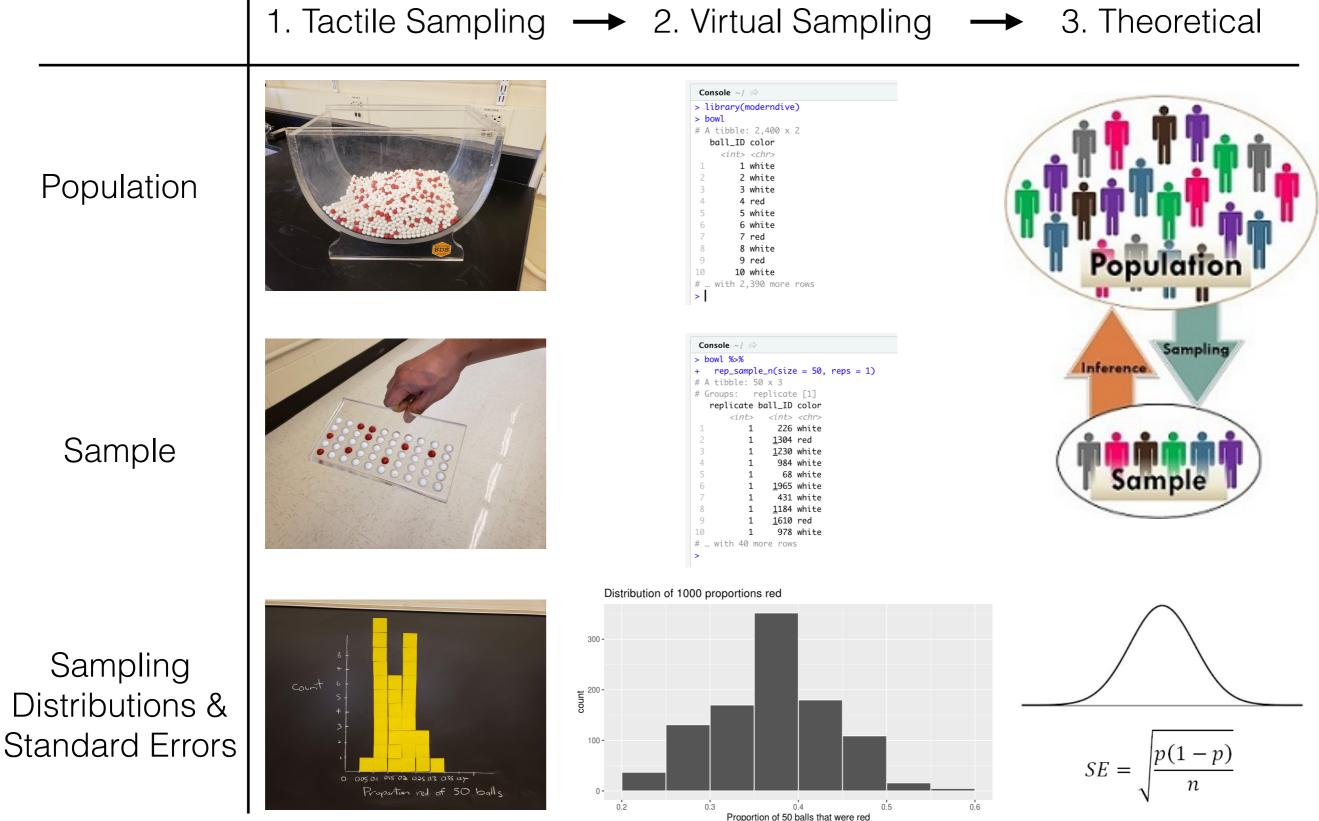
- 1. What are we doing ?
 - tidyverse gets its name from fact that all inputs/ outputs are assumed to be *tidy data frames*
 - Importing data via readr::read_csv()
- 2. Why are we doing this 🤪
 - Students have their own Excel/Google Sheets data
 - Will have to convert from wide to tidy/long format
- 3. Our opinions
 - This chapter can be skipped if
 - A. You only provide tidy/long data
 - B. You have your students <u>publish .csv</u> files to Google Sheets
- 4. Potential pitfalls
 - Working directories!

Chapter 6: Simple regression

Goal 2: Modeling with Regression 1. Data 2. Exploratory Data Analysis

evals ×				
(I) I Filter				
^	ID [‡]	score 🍦	age 🍦	gender 🍦
1	1	4.7	36	female
2	2	4.1	36	female
3	3	3.9	36	female
4	4	4.8	36	female
5	5	4.6	59	male
6	6	4.3	59	male
7	7	2.8	59	male
8	8	4.1	51	male
9	9	3.4	51	male
10	10	4.5	40	female
11	11	3.8	40	female
12	12	4.5	40	female

3. Regression Coeff

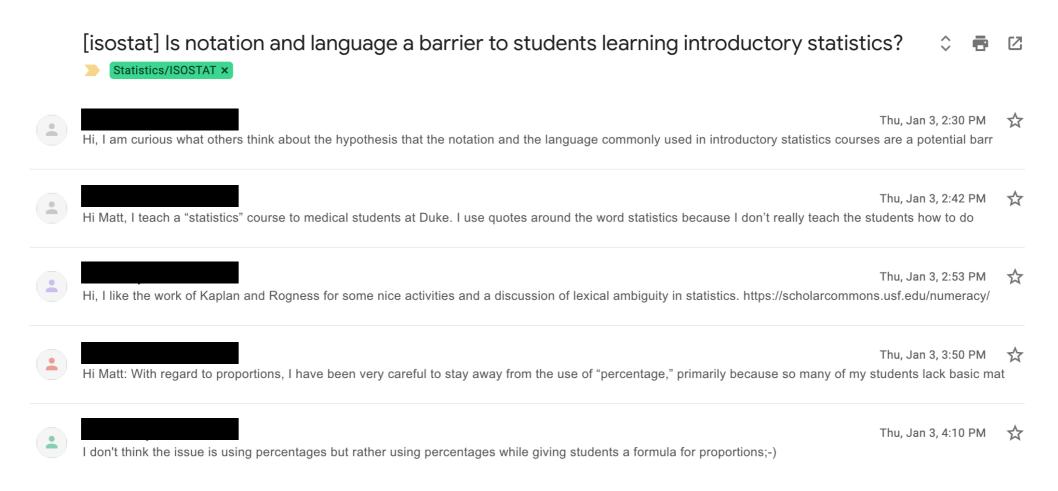

- 1. What are we doing ?
 - <u>Descriptive</u> simple linear regression & regression with single categorical x only.
- 2. Why are we doing this 🤥
 - Multivariate thinking per <u>GAISE guidelines</u> & modeling
- 3. Our opinions
 - Separate descriptive vs inference so we can introduce it early, not at end of term
 - moderndive::get_regression_table() function has Cl's, no p-value <u>%s</u>
 - Much of world's data is categorical, to skip is to do students a disservice
 - Introduce <u>causal inference</u>
- 4. Potential pitfalls
 - Understanding <u>regression with categorical x</u>

Chapter 7: Multiple regression

- 1. What are we doing ?
 - <u>Descriptive</u> multiple regression & regression with 1 num & 1 categ x.
- 2. Why are we doing this 🤥
 - Baby's first model selection!
 - Occam's Razor between interaction and parallel slopes model
- 3. Our opinions
 - Equation for fitted values w/ indicator functions is $\boldsymbol{\widehat{\mathbf{w}}}$
 - [1 num & 1 categ x] is more important than [2 num x]
- 4. Potential pitfalls 🔔
 - Interaction model: interpreting offsets in intercept + differences in slope
 - How to plot parallel slopes model

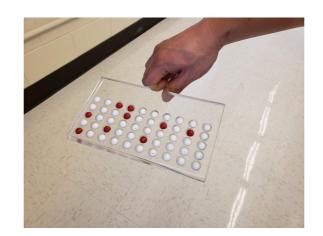
Chapter 8: Sampling

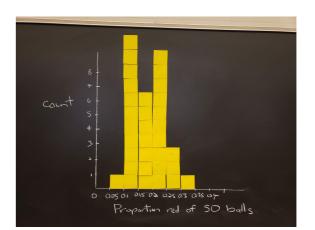
Goal 1: Sampling for Inference


1. What are we doing ?

- Studying effect of sampling variation on estimates
- Studying effect of sample size on sampling variation
- 2. Why are we doing this 🤪
 - So students don't get lost in abstraction & never lose
 on what statistical inference is about.

3. Our opinions


- Have some mental anchor for all statistical inference: tactile sampling exercise
- 4. Potential pitfalls 🔔
 - Terminology, notation, & definitions related to sampling


Terminology, definitions, & notation

My approach: Do this first...

Terminology, definitions, & notation

Then this...

TABLE 8.6:	Scenarios	of sampling	for	inference
	000110100	or sumpling	101	

Scenario	Population parameter	Notation	Point estimate	Notation.
1	Population proportion	p	Sample proportion	\hat{p}

Terminology, definitions, & notation

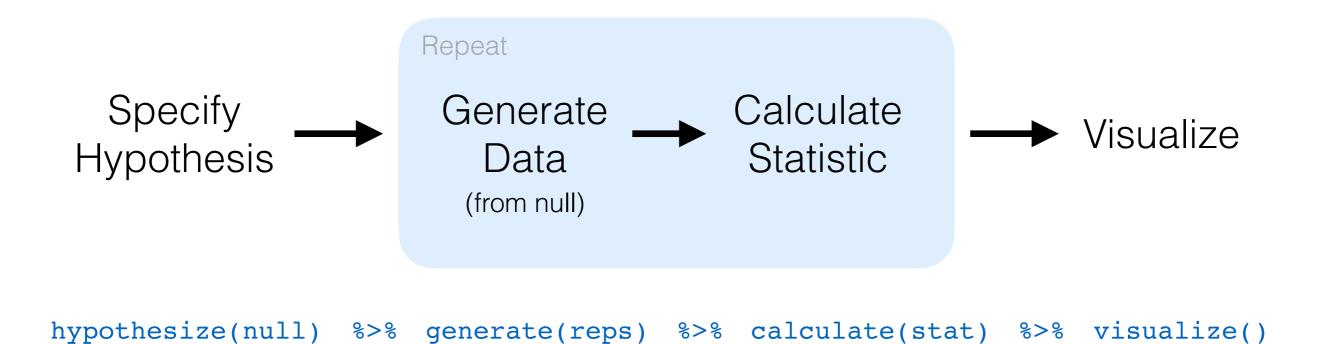
Then this... Then generalization & transference...

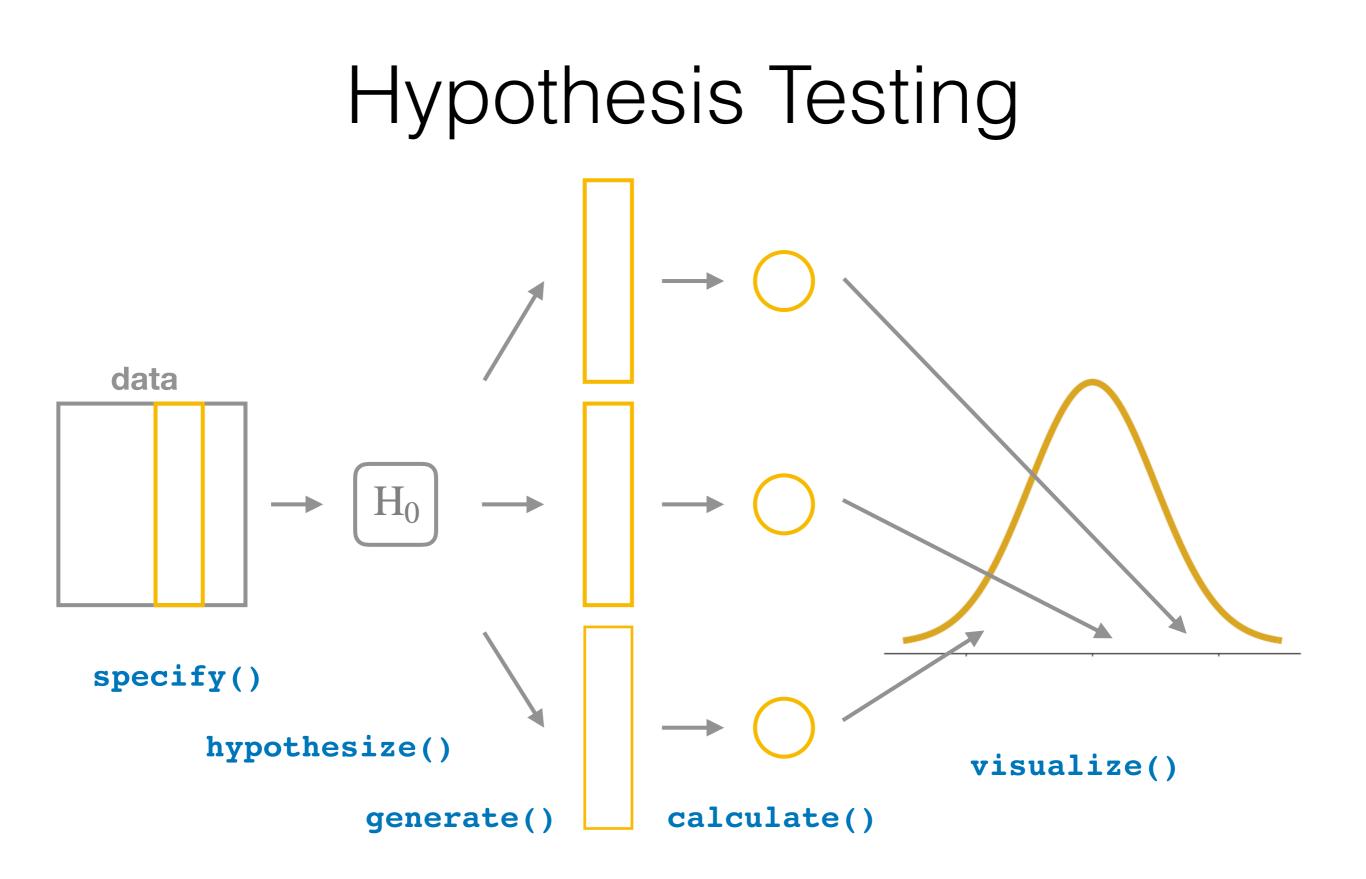
TABLE 8.6: Scenarios of sampling for inference

Scenario	Population parameter	Notation	Point estimate	Notation.
1	Population proportion	p	Sample proportion	\hat{p}
2	Population mean	μ	Sample mean	$\widehat{\mu}$ or \overline{x}
3	Difference in population proportions	p_1-p_2	Difference in sample proportions	${\hat p}_1 - {\hat p}_2$
4	Difference in population means	$\mu_1-\mu_2$	Difference in sample means	$\overline{x}_1 - \overline{x}_2$
5	Population regression slope	eta_1	Sample regression slope	${\widehat eta}_1$ or b_1
6	Population regression intercept	eta_0	Sample regression intercept	${\widehat eta}_0$ or b_0

From moderndive Ch 8.5.2

Chapter 9: Confidence Intervals


- 1. What are we doing ?
 - Introducing bootstrap REsampling
 - Constructing confidence intervals
- 2. Why are we doing this 🤥
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in Cl's?
- 3. Our opinions
 - Have some mental anchor for all statistical inference: tactile REsampling exercise
- 4. Potential pitfalls 🔔
 - "Bootstrap resampling distribution is an approximation to sampling distribution"
 - Population from a *superpopulation?*
 - Bridging gap with traditional formula-based methods


Chapter 10: Hypothesis Testing

- 1. What are we doing ?
 - Introducing permutation REsampling
 - Conducting hypothesis tests
- 2. Why are we doing this 🤥
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in HT's?
 - Convincing students there is only one test
- 3. Our opinions
 - I hate hypothesis testing, but they are still widely used
- 4. Potential pitfalls 🔔
 - Terminology, notation, & definitions related to HT
 - Bridging gap with traditional formula-based methods

infer package for tidy statistical inference

http://infer.netlify.com/

Chapter 11: Inference for Regression

Goal 2: Modeling with Regression 2. Exploratory Data Analysis 1. Data

	ID ID I <	Filter score 4.7 4.1 3.9 4.8 4.6 4.3 2.8 4.1 3.4 4.5 3.8 4.5	 age 36 36 36 36 59 59 59 51 51 40 40 40 	genderfemalefemalefemalefemalemalemalemalemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemale		Teaching Score			50	60	70	:	Gender female male		
3. Regre	ssio	n (Со	eff			30	40	³⁰ Age 4. F				ר Ta	able	Э
3. Regre	ssio	n (Со	eff		mpli			Age				ר Ta	able	Э

- 1. What are we doing ?
 - Getting students to interpret regression thru an inferential lens
 - Worth doing resampling for regression? I'm not sure.
- 2. Why are we doing this 🤪
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in regression?
- 3. Our opinions
 - Use EDA + get_regression_points() to do your own residual analysis, not base::plot(model)
- 4. Potential pitfalls 🔔
 - "Does R use simulation or a formula for p-values/CI's in a regression table?"

Conclusion

Starting Small: Some Suggestions

- Ch6: Use get_regression_table() instead of summary()
- Ch5 + Ch2: Publish (non-sensitive) data to .csv via Google Sheets and import with read_csv().
- Ch3: Spend time covering <u>Grammar of Graphics</u> & do all plots in course via <u>ggplot2</u>
- Ch8 + Ch5 + Ch3: Use data frame + %>% + rep_sample_n() to make a visualization of a sampling distribution from scratch!
- Ch5: Have them do an EDA via group_by() %>%
 summarize() to get two means + two-sample t-test
- Ch3 + Ch5 + Ch10: Jump straight into infer package

Resources

- Always two versions of moderndive available
 - 1. Development version (being edited): <u>moderndive.netlify.com</u>
 - Latest release (updated x2 per year): <u>moderndive.com</u>
- On GitHub at <u>github.com/moderndive/</u>
 - 1. <u>bookdown</u> source code for book
 - 2. moderndive package source code
- Join our mailing list at <u>eepurl.com/cBkltf</u>

Timeline

- Now: Development version on <u>moderndive.netlify.com</u> being edited:
 - Ch9 on CI, Ch10 on HT need cleaning
 - #Ch11 on inference for regression ##
- **Mid-June**: Preview of print edition available on moderndive.com
- Late-July: Posting labs/problems sets & example final project samples
- Fall 2019: Print edition available!

The R Series

Thank you!