Self-Driving Cars & Forest Ecology: Modeling for Machine Learning

Albert Y. Kim Assistant Professor <u>Statistical & Data Sciences</u>, Smith College Sigma Xi, The Scientific Research Honor Society Tuesday 2019/2/12

What variables are being collected?

Road Map

Machine Learning as Modeling

True (Unknown) Model: $y = f(x) + \epsilon$

Approximated Model:

$$\hat{y} = \hat{f}(\vec{x})$$

Now to the blackboard for Chalk Talk #1...

Given Data (x, y) from "unknown" f(x)

Approximate (i.e. "fit") a Model $\hat{f}(x)$

How about this $\hat{y} = \hat{f}(x)$?

What does this $\hat{f}(x)$ predict for x = 0.5?

What does this $\hat{f}(x)$ predict for x = 0.5?

What does this $\hat{f}(x)$ predict for x = 0.5?

Ok, great. But instead of this $\hat{f}(x)$...

Model Fitting Method: (Cubic) Splines

- Splines fit the blue curve $\hat{f}(x)$ that **minimizes** the (squared) vertical distances between all:
 - predicted points $\hat{y} = \hat{f}(x)$ and
 - observed points y
- Amount of "wiggle" is the **complexity of the model**
- Occam's Razor

Three Different $\hat{f}(x)$

Underfit!

Overfit!

[&]quot;Just right!"

Road Map

Data: 2008 & 2014 Censuses of Trees

Data: 2008 Snapshot

Spatial distribution of top 8 species

Recall our Variables!

y: Outcome Variable = Avg Annual Growth

Observed average annual growth of trees 2008-2014

Predictor Variables \overrightarrow{x}

- X_1 : Species of tree
- \mathcal{X}_2 : Size of tree (diameter at breast height)

Predictor Variables

 \mathcal{X}_3 : Number and size of competitor trees (biomass)

Road Map

Machine Learning & Forest Ecology

- **Goal of Modeling:** Fit models $\hat{f}(x)$ that best approximate the true (unknown) model f(x)
- Goal of Machine Learning: Fit models that best "predict" the outcome variable
- My goal: Fit models that best predict the growth of trees
- **Tools**: The same machine learning tools and framework as self-driving cars

Issue of underfitting vs overfitting?

Underfit!

"Just right!"

Overfit!

Validation Set Approach

Fit/train model on *training* data

Assess model on independent *test* data

Typical Model Performance

Generalization: 5-Fold Crossvalidation

Repeat validation training/test set split 5 times:

Road Map

Follow)	,

Perfect gym for a statistician

Modeling is not as objective as you think

Scenario:

What they think is an "appropriate" model... ... might not be the same for these folks:

To Close: Two Quotes on Modeling

"All models are wrong, but some are useful." George Box

"WTF is up with your $\hat{f}(x)$?" @rudeboybert

Thanks!

Before I go: A "Wizard of Oz" Reveal...

Our approximated $\hat{f}(x)$...

... was pretty close $f(x) = 0.2x^{11}(10(1-x))^6 + 10(10x)^3(1-x)^{10}$ to the *true* model:

